本文共 3663 字,大约阅读时间需要 12 分钟。
之前写过一篇。因为dubbo逻辑集群的功能主要是在client端,主要侧重在client的分析。后来因为工作忙和懒癌,也就没再继续server的叙述了。最近正好在看大众点评的cat源码,其中也有rpc的模块,就借此专门来分析下rpc server的实现。
Cat server基于netty,是典型的reactor模型。
上图是网上找的reactor模型示例图。Netty的boss和workder分别映射图中的mainReactor和subReactor。由boss accept nio channel,之后交由worker read, decode以及handle等。Netty的实现和图中略微有点不一致,在netty中decode和handle是同步的。需要说明的是netty handler也可以异步处理,netty支持线程池分发handler thread。
还有另一种方案,由应用程序自身实现延迟队列做异步处理,handler只需将消息(事件)放入队列即可,cat采用的就是这种方案。Cat是通过decoder解码消息后调用handler将消息插入延迟队列,并没有向netty注册handler再由netty在decode完毕后调用相应handler。
Cat的传输数据对象为MessageTree,MessageCodec对传输消息编码和解码,MessageHanlder将消息放入队列。下图是cat server的静态结构。
MessageConsumer和TcpSocketReceiver均被CatHomeModule依赖,其实是在receiver初始化工程中也相应初始化了这两个重要组件。同时MessageConsumer也是MessageHandler聚合属性,而handler则是receiver的一个内部属性。结构上看起来有点混乱,但其实module是启动了receiver的初始化,然后receiver在初始化过程中依赖了handler,而handler又依赖了consumer。而Module和consumer之间的依赖关系是一种很弱的关系,只是为了注册虚拟机的shutdownhook(消息提交章节会做详细说明)。
MessageTree是经由网络传递的消息报文对象,由MessageCodec进行解码和编码。在服务端被解码生成后作为方法参数被MessageConsumer消费,最终放入MessageQueue等待MessageAnalyzer处理。
MessageQueue被聚合在PeriodTask内,后者是个daemon线程,不断轮询MessageQueue,当有队列里有消息时就调用MessageAnalyzer处理,每个task只对应一个analyzer,analyzer就是队列的消费者。
一个Period代表一个周期,每个周期对应一个持续时间(duration),默认是一小时,且周期是整点时间段,例如1:00-2:00,2:00-3:00,而不是1:01-2:01。每个周期对应多个task,每条消息相应的也会被拷贝成多分分发给每个task。
周期由PeriodManager参考周期策略(PeriodStrategy)的结果生成或结束。
介绍完cat server的实体概念后,再从动态层面看下它的初始化过程以及消息的就绪,消费和提交过程。
在静态结构视图里提到了CatHomeModule依赖两个实体,分别为MessageCosumer和TcpSocketReceiver,它们分别承担了reaactor以及延迟队列的功能,由CatHomeModule的initialize和setup阶段被初始化。
首先看下延迟队列的初始化过程。
上节提到策略结果会开始一个新的周期或者结束一个老的周期。上图的步骤5,策略会基于持续时间,提前开始时间(假设为a)以及延迟结束时间(假设为b)生成一个结果(a和b在cat中均默认为3分钟)。策略结果如果为正则start新周期,为负则end老周期,为0则不做任何动作。Cat默认超过duration*2+b的周期会被清理,相应的新周期也会提前a开始。再看周期启动周期任务的过程(8-12),周期先回从应用上下文中获取所有的MessageAnalyzer(类似spring的getBeansOfType),再循环每个analyzer为每个analyzer生成一个或多个周期任务(视analyzer#getAnalyzerCount值而定)。
再看下reactor模块的初始化过程。
TcpSocketReciver在Server启动过程中被从上下文中lookup出来,并且执行初始化过程,在初始化的过程中通过依赖注入将MessageConsumer注入了MessageHandler中。相应的也将MessageHandler和MessageCodec注入给自己作为聚合属性。详细描述下步骤8和步骤10:
1. PeriodManager维护了一个m_periods的list,find的过程就是轮询该列表找出duration包含MessageTree#timeStamp的唯一周期。 2. Period里会保存m_tasks映射,结构是(Analyzer类型全限定名,List)。在上节提过analyzer会对应一到多个task,对这种重复task select过程会通过MessageTree#domain进行hash取模只选出1个的。之所以要支持analyzer和task一对多的关系模型应该是考虑到有些analyzer处理会比较耗时,对这种就需要设定多个task,保证处理效率。消息被消费后并不会立即持久化,而是放在内存里(analyzer的map属性),结构是(duration, (domain, T)),T是个业务维度的报表对象,例如EventReport,HeartbeatReport等。在周期结束或者jvm shutdown时会触发消息持久化。
1. 上图是正常周期结束的处理过程。之前介绍过PeriodManager会默认停掉duration*2+extraTime时间前的周期,被停的周期会循环周期内的所有task做finish,相应的task调用其聚合属性MessageAnalyzer的doCheckpoint做消息持久化。 2. 里介绍过MessageConsumer和CatHomeModule是很弱的依赖关系,用来注册虚拟机的shutdownhook。下面是注册shutdownhook的代码片段:Runtime.getRuntime().addShutdownHook(new Thread() { @Override public void run() { consumer.doCheckpoint(); } });
consumer#doCheckpoint会通过PeriodManager#findPeriod查找当前时间点对应的周期,并对该周期进行finish,对应上图步骤9及以后。
3. 需要强调的一点是,MessageAnalyzer对MessageTree并不是单纯的做保存,而是基于业务做指标度量。可以把MessageTree想象成度量指标,而MessageAnalyzer则是对指标作分析出报表,doCheckpoint持久化的一般都是报表数据,报表里包含了部分甚至全部MessageTree信息。